
MATLAB® Compiler™

Hadoop® Integration Guide

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler™ Hadoop® Integration Guide
© COPYRIGHT 2014–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

October 2014 Online only New for Version 5.2 (R2014b)
March 2015 Online only Revised for Version 6.0 (R2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Deployable Archives
1

Package Deployable Archive to Run Against Hadoop with
Hadoop Compiler App . 1-2

Create Deployable Archive to Run Against Hadoop from
Command Line . 1-6

Standalone Applications
2

Create Standalone Application to Run Against Hadoop from
Command Line . 2-2

Hadoop Configuration
3

Hadoop Configuration . 3-2
When Using Hadoop Standalone Mode 3-2
Hadoop Version Considerations . 3-2

Hadoop Settings File . 3-3

iv Contents

Functions — Alphabetical List
4

Apps
5

1

Deployable Archives

• “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App” on
page 1-2

• “Create Deployable Archive to Run Against Hadoop from Command Line” on page
1-6

1 Deployable Archives

1-2

Package Deployable Archive to Run Against Hadoop with Hadoop
Compiler App

This example shows how to create a deployable archive that calculates mean airline
delays. It runs against Hadoop® using the Hadoop Compiler app, which is accessible
from deploytool. The archive that you create contains all the MATLAB® based content
associated with the component. The Hadoop Compiler app generates mcc commands that
help you customize to your specification.

This example uses the MaxMapReduceExample.m example file and the airline dataset,
airlinesmall.csv, both available at the toolbox/matlab/demos folder. The files
in the folder are not part of the MATLAB Runtime. Move your example code to a new
working folder for deployment.

Deployable archive that runs against Hadoop using Hadoop Compiler app is supported
only on Linux®.

Configure Files and Environment

Set environment variables and cluster properties for your Hadoop configuration. These
properties are necessary for submitting jobs to your Hadoop cluster.

• Set up the environment variable, HADOOP_HOME to point at your Hadoop install folder.
Modify the system path to include $HADOOP_HOME/bin.

• Install the MATLAB Runtime in a folder that is accessible by every worker node in
the Hadoop cluster. The following example uses /hd-shared/MCR/v84.

• Copy the airlinesmall.csv into Hadoop Distributed File System (HDFS™) folder
/datasets/airlinemod.

• Copy the map function maxArrivalDelayMapper.m from toolbox/matlab/demos
folder to the working folder.

function maxArrivalDelayMapper (data, info, intermKVStore)

partMax = max(data.ArrDelay);

add(intermKVStore,'PartialMaxArrivalDelay',partMax);

For more information, see “Write a Map Function”.
• Copy the reduce function maxArrivalDelayReducer.m from toolbox/matlab/

demos folder to the working folder.

 Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App

1-3

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)

maxVal = -inf;

while hasnext(intermValIter)

 maxVal = max(getnext(intermValIter), maxVal);

end

add(outKVStore,'MaxArrivalDelay',maxVal);

For more information, see “Write a Reduce Function”.

Create and Save Datastore

Create a datastore object from the MaxMapReduceExample.m and save the
datastore to a .mat file.

ds = datastore('airlinesmall.csv', 'TreatAsMissing','NA',...

 'SelectedVariableNames','ArrDelay', 'ReadSize', 1000)

save('airlinesmall.mat','ds');

For more information, “Getting Started with Datastore”

Create a Deployable Archive Using Hadoop Compiler App

Launch the Hadoop Compiler app through the MATLAB command line or through the
apps gallery. At the MATLAB command line type the following command:

hadoopCompiler

1 Deployable Archives

1-4

In the Map Function section of the toolstrip, click the plus button to add map
file, which contains the map function. Browse and select one map function
maxArrivalDelayMapper.m.

In the Reduce Function section of the toolstrip, click the plus button to add reduce
file, which contains the reduce function. Browse and select one reduce function
maxArrivalDelayReducer.m.

In the Input Types section, select tabulartext as input type. By default, the input
type is tabulartext.

In the Output Types section, select tabulartext as output type. By default, the output
type is binary.

Rename the application name to maxArrivalDelay.

 Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App

1-5

In the Data store file field, click Browse and select the airlinesmall.mat file, which
contains the saved datastore object.

Click Package to build a deployable archive.

The Hadoop Compiler app creates a log file PackagingLog.txt and two folders
for_redistribution and for_testing. The for_redistribution folder
contains readme file, shell script run_maxarrivaldelay.sh, and deployable archive
maxarrivaldelay.ctf. The for_testing folder contains the same three files and a
log file mccExcludedfiles.log.

Run Hadoop Job

At the MATLAB command prompt, run the deployable archive against Hadoop using the
generated shell script. The arguments in the command are MCRRoot, Hadoop properties
defined using -D flag, the data file, and the new results folder. The command to execute
the script must be entered as a single line.
>> cd maxArrivalDelay/for_testing

>> !./run_maxarrivaldelay.sh /hd-shared/MCR/v84

 -D mw.mcrroot=/hd-shared/MCR/v84 /datasets/airlinemod/airlinesmall.csv

 myresults

View Results in MATLAB

Examine the results using the Hadoop command.

!./hadoop fs -cat myresults/*

 'MaxArrivalDelay' [1014]

Other examples of map and reduce functions are available at toolbox/matlab/
demos folder. You can use other examples to prototype similar deployable archives
that run against Hadoop. For more information, see “Build Effective Algorithms with
MapReduce”.

See Also
datastore | deploytool | KeyValueDatastore | TabularTextDatastore

Related Examples
• “Create Deployable Archive to Run Against Hadoop from Command Line” on page

1-6

1 Deployable Archives

1-6

Create Deployable Archive to Run Against Hadoop from
Command Line

This example shows how to create a deployable archive with mcc command that
calculates mean airline delays. The archive that you create contains all the MATLAB
based content associated with the component. The mcc command creates a shell script
to run the deployable archive against Hadoop. You can use shell script to customize the
execution of the deployable archive within your particular Hadoop environment.

This example uses the MaxMapReduceExample.m example file and the airline dataset,
airlinesmall.csv, both available at the toolbox/matlab/demos folder. The files
in the folder are not part of the MATLAB Runtime. Move your example code to a new
working folder for deployment.

Deployable archive that runs against Hadoop using mcc is supported only on Linux.

Configure Files and Environment

Set environment variables and cluster properties for your Hadoop configuration. These
properties are necessary for submitting jobs to your Hadoop cluster.

• Set up the environment variable, HADOOP_HOME to point at your Hadoop install folder.
Modify the system path to include $HADOOP_HOME/bin.

• Install the MATLAB Runtime in a folder that is accessible by every worker node in
the Hadoop cluster. The following example uses /hd-shared/MCR/v84.

• Copy the airlinesmall.csv into Hadoop Distributed File System (HDFS) folder /
datasets/airlinemod.

• Copy the map function maxArrivalDelayMapper.m from toolbox/matlab/demos
folder to the working folder.

function maxArrivalDelayMapper (data, info, intermKVStore)

partMax = max(data.ArrDelay);

add(intermKVStore,'PartialMaxArrivalDelay',partMax);

For more information, see “Write a Map Function”.
• Copy the reduce function maxArrivalDelayReducer.m from toolbox/matlab/

demos folder to the working folder.

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)

maxVal = -inf;

 Create Deployable Archive to Run Against Hadoop from Command Line

1-7

while hasnext(intermValIter)

 maxVal = max(getnext(intermValIter), maxVal);

end

add(outKVStore,'MaxArrivalDelay',maxVal);

For more information, see “Write a Reduce Function”.

Create and Save Datastore

Create a datastore object from the MaxMapReduceExample.m and save the
datastore to a .mat file.

ds = datastore('airlinesmall.csv', 'TreatAsMissing','NA',...

 'SelectedVariableNames','ArrDelay', 'ReadSize', 1000)

save('airlinesmall.mat','ds');

For more information, “Getting Started with Datastore”

Create Hadoop Settings File

A Hadoop settings file specifies input type tabulartext, output type binary, the map
function, the reduce function, and previously created datastore.

mw.ds.in.type=tabulartext

mw.ds.in.format=airlinesmall.mat

mw.ds.out.type=binary

mw.mapper=maxArrivalDelayMapper

mw.reducer=maxArrivalDelayReducer

For more information, see “Hadoop Settings File” on page 3-3.

Create a Deployable Archive Using mcc

Use the mcc command with the -m flag to create a deployable archive. The -m flag
creates a standard executable that can be run from a command line. However, the mcc
command cannot package the results in an installer. The command must be entered as a
single line.
>> mcc -H -W 'hadoop:airlinesmall,CONFIG:MWHadoopSetting.txt'

 maxArrivalDelayMapper.m maxArrivalDelayReducer.m

 -a airlinesmall.mat

For more information, see mcc.

MATLAB Compiler™ creates a shell script run_maxarrivaldelay.sh, a deployable
archive airlinesmall.ctf, and a log file mccExcludedfiles.log.

1 Deployable Archives

1-8

Run Hadoop Job

Deploy the archive as a Hadoop job by pointing the job to the csv files in the airline
dataset. The arguments in the command are MCRRoot, Hadoop properties defined using
-D flag, the data file, and the new results folder. The command must be entered as a
single line.
>> !./run_airlinesmall.sh /hd-shared/MCR/v84

 -D mw.mcrroot=/hd-shared/MCR/v84 "/datasets/airline/*.csv"

 myresults

View Results in MATLAB

Visualize and plot the results.

ds= datastore('hdfs://hadoop01glnxa64/user/username/myresults/part*',...

 'DatastoreType', 'keyvalue');

airlinesmallResult = readall(ds)

 Key Value

 __________________ ________

 'MaxArrivalDelay' [1014]

Other examples of map and reduce functions are available at toolbox/matlab/
demos folder. You can use other examples to prototype similar deployable archives
that run against Hadoop. For more information, see “Build Effective Algorithms with
MapReduce”.

See Also
datastore | deploytool | KeyValueDatastore | mcc | TabularTextDatastore

Related Examples
• “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App”

on page 1-2

2

Standalone Applications

2 Standalone Applications

2-2

Create Standalone Application to Run Against Hadoop from
Command Line

This example shows how to modify a MATLAB example that calculates mean airline
delays and creates a standalone application. The standalone application is a MATLAB
program that runs against Hadoop using the mcc command. The mapreducer defines
the environment for Hadoop.

This example uses the MaxMapReduceExample.m example file and the airline dataset,
airlinesmall.csv, both available at the toolbox/matlab/demos folder. The files
in the folder are not part of the MATLAB Runtime. Move your example code to a new
working folder for deployment.

Standalone application that runs against Hadoop using mcc is supported only on Linux.

Configure Files and Environment

Set environment variables and cluster properties for your Hadoop configuration. These
properties are necessary for submitting jobs to your Hadoop cluster.

• Set up the environment variable, HADOOP_HOME to point at your Hadoop install folder.
Modify the system path to include $HADOOP_HOME/bin.

setenv ('HADOOP_HOME','/share/hadoop/a1.2.1');

• Install the MATLAB Runtime in a folder that is accessible by every worker node in
the Hadoop cluster. The following steps use /hd-shared/MCR/v84.

• Copy the airlinesmall.csv into Hadoop Distributed File System (HDFS) folder /
datasets/airlinemod.

• Copy the map function maxArrivalDelayMapper.m from toolbox/matlab/demos
folder to the working folder.

function maxArrivalDelayMapper (data, info, intermKVStore)

partMax = max(data.ArrDelay);

add(intermKVStore,'PartialMaxArrivalDelay',partMax);

For more information, see “Write a Map Function”.
• Copy the reduce function maxArrivalDelayReducer.m from toolbox/matlab/

demos folder to the working folder.

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)

 Create Standalone Application to Run Against Hadoop from Command Line

2-3

maxVal = -inf;

while hasnext(intermValIter)

 maxVal = max(getnext(intermValIter), maxVal);

end

add(outKVStore,'MaxArrivalDelay',maxVal);

For more information, see “Write a Reduce Function”.

Create Application using MapReduce

Create a datastore that points to the airline data in Hadoop Distributed File System
(HDFS™) .

ds = datastore('hdfs://hadoop01glnxa64/datasets/airlinemod/airlinesmall.csv',...

 'TreatAsMissing','NA');

ds.SelectedVariableNames = {'Year', 'Month', 'DayofMonth', 'UniqueCarrier'};

If the files are located in HDFS, then the datastore should point to HDFS. For more
information, see “Read from HDFS”.

Create a mapreducer object to set the properties of Hadoop in deployed mode. The
mapreducer passes information about the execution environment to standalone
applications that run against Hadoop. The mapreducer must point to the location of the
MATLAB Runtime that is accessible from all the Hadoop worker nodes.

mr = mapreducer(matlab.mapreduce.DeployHadoopMapReducer('MCRRoot',...

 '/hd-shared/hadoop-2.2.0/MCR/v84'));

For more information, see matlab.mapreduce.DeployHadoopMapReducer.

The new application maxMapreduceapp.m consists of a datastore, a mapreducer
object that specifies the deployed environment variables, a mapreduce command, and a
command to view the results of mapreduce:

ds = datastore('hdfs://hadoop01glnxa64/datasets/airlinemod/airlinesmall.csv',...

 'TreatAsMissing','NA');

ds.SelectedVariableNames = {'Year', 'Month', 'DayofMonth', 'UniqueCarrier'};

mr = mapreducer(matlab.mapreduce.DeployHadoopMapReducer('MCRRoot',...

 '/hd-shared/hadoop-2.2.0/MCR/v84'));

result = mapreduce(ds, @maxArrivalDelayMapper, @maxArrivalDelayReducer, mr,...

 'OutputType','Binary', ...

 'OutputFolder','hdfs://hadoop01glnxa64/user/username/myresults' ...

);

maxMapreduceappResult = readall(result)

2 Standalone Applications

2-4

Compile into Standalone Application

Use the mcc command with the -m flag to create a standalone application. The -m flag
creates a standard executable that can be run from a command line. However, the mcc
command cannot package the results in an installer.

mcc -m maxmapreduceapp.m

For more information, see mcc.

MATLAB Compiler creates maxmapreduceapp.m, shell script
run_maxarrivaldelay.sh, and a log file mccExcludedfiles.log.

Run Standalone Application

Run the standalone application from MATLAB command prompt using the following
command:

!./maxmapreduce

 Key Value

 ____________ _____________

 'AA' [92X1 double]

 'AS' [92X1 double]

 'CO' [92X1 double]

 'DL' [92X1 double]

 'EA' [92X1 double]

Results display in MATLAB.

Other examples of map and reduce functions are available at toolbox/matlab/
demos folder. You can use other examples to prototype similar standalone applications
that run against Hadoop. For more information, see “Build Effective Algorithms with
MapReduce”.

See Also
matlab.mapreduce.DeployHadoopMapReducer | datastore |
KeyValueDatastore | mcc | TabularTextDatastore

Related Examples
• “Package Standalone Application with Application Compiler App”

 Create Standalone Application to Run Against Hadoop from Command Line

2-5

• “Pass Parallel Computing Toolbox Profile at Run Time”
• “Embed Parallel Computing Toolbox Profile”

3

Hadoop Configuration

• “Hadoop Configuration” on page 3-2
• “Hadoop Settings File” on page 3-3

3 Hadoop Configuration

3-2

Hadoop Configuration

In this section...

“When Using Hadoop Standalone Mode” on page 3-2
“Hadoop Version Considerations” on page 3-2

When Using Hadoop Standalone Mode

To execute a deployed MATLAB application or run a deployable archive as a Hadoop
job in standalone mode, first set the appropriate environment variables in the Hadoop
environment shell:

• Modify HADOOP_CLASSPATH according to your Hadoop version.

• If you are working with Hadoop V1, use mcr_root/toolbox/mlhadoop/jar/
a1.2.1/mwmapreduce.jar

• If you are working with Hadoop V2, use mcr_root/toolbox/mlhadoop/jar/
a2.2.0/mwmapreduce.jar

where, mcr_root is the base of the install area for MATLAB Runtime
• Export LD_LIBRARY_PATH to include the following entries:

• mcr_root/runtime/glnxa64 :mcr_root/bin/glnxa64 mcr_root/sys/os/

glnxa64 :mcr_root/sys/opengl/glnxa64

where, mcr_root is the base of the install area for MATLAB Runtime

Hadoop Version Considerations

• If you are working with Hadoop V1, improve the performance by setting
mapred.job.reuse.jvm.num.tasks to -1.

• If you are working with Hadoop V2, the performance-improvement property is not
supported.

 Hadoop Settings File

3-3

Hadoop Settings File

In creating a deployable archive, you must create a Hadoop settings file that contains
configuration details. If you are using mcc, create a text file. If you are using
deploytool, the Hadoop Compiler app automatically creates the file for you when you
select the map function, the reduce function, the input type, and the output type. You can
view the contents of your settings file in the Configuration file contents section of the
Hadoop Compiler app.

Parameter Type Description Default Value

mw.mapper MATLAB map function name Hadoop identity
map function

mw.reducer MATLAB reduce function name Hadoop identity
reduce function

mw.ds.in.type MATLAB input type

The input type is of two types, tabulartext
and binary. The tabulartext input type is
a formatted text file. The file is either a source
file or result of the previous mapreduce job.
The binary input type is a sequence file.

tabulartext

mw.ds.in.formatThis parameter is valid with tabulartext
input type. This parameter specifies a .mat file
that contains a datastore.

None

mw.ds.in.readsizeThis parameter is valid with binary input
type. This parameter specifies a number that
are number of rows for passing to the map
function.

1

mw.ds.out.type MATLAB output type

The output type is of two types, tabulartext
and binary. The tabulartext output type
writes to a text file. The binary output type
writes to a sequence file.

binary

This example shows a settings file with tabulartext input type:

3 Hadoop Configuration

3-4

mw.mapper=maxArrivalDelayMapper

mw.reducer=maxArrivalDelayReducer

mw.ds.in.type=tabulartext

mw.ds.in.format=airlinesmall.mat

mw.ds.out.type=tabulartext

This example shows a settings file with binary input type:

mw.mapper=maxArrivalDelayMapper

mw.reducer=maxArrivalDelayReducer

mw.ds.in.type=binary

mw.ds.in.readsize=1

mw.ds.out.type=tabulartext

Related Examples
• “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App”

on page 1-2
• “Create Deployable Archive to Run Against Hadoop from Command Line” on page

1-6

4

Functions — Alphabetical List

4 Functions — Alphabetical List

4-2

deploytool

Compile and package functions for external deployment

Syntax

deploytool

deploytool project_name

deploytool -build project_name

deploytool -package project_name

Description

deploytool opens a list of the compiler apps.

deploytool project_name opens the appropriate compiler app with the project
preloaded.

deploytool -build project_name runs the appropriate compiler app to build the
specified project. The installer is not generated.

deploytool -package project_name runs the appropriate compiler app to build and
package the specified project. The installer is generated.

Examples

Create a New Compiler Project

Open the compiler to create a new project.

deploytool

Package an Application using an Existing Project

Open the compiler to build a new application using an existing project.

 deploytool

4-3

deploytool -package my_magic

Input Arguments

project_name — name of the project to be compiled
string

Specify the name of a previously saved project. The project must be on the current path.

4 Functions — Alphabetical List

4-4

mcc

Compile MATLAB functions for deployment

Syntax
mcc -e | -m [-a filename...] [-B filename [:arg...]] [-C] [-d outFolder] [-f filename] [-
g] [-I directory...] [-K] [-M string] [-N] [-o filename] [-p path...] [-R option] [-v] [-w
option [:msg]] [-Y filename] mfilename
mcc -l [-a filename...] [-B filename [:arg...]] [-C] [-d outFolder] [-f filename] [-g]
[-I directory...] [-K] [-M string] [-N] [-o filename] [-p path...] [-R option] [-v] [-w
option [:msg]] [-Y filename] mfilename...
mcc -c [-a filename...] [-B filename [:arg...]] [-C] [-d outFolder] [-f filename] [-g]
[-I directory...] [-K] [-M string] [-N] [-o filename] [-p path...] [-R option] [-v] [-w
option [:msg]] [-Y filename] mfilename...
mcc -W cpplib:library_name -T link:lib [-a filename...] [-B filename [:arg...]] [-C] [-d
outFolder] [-f filename] [-g] [-I directory...] [-K] [-M string] [-N] [-o filename] [-p
path...] [-R option] [-S] [-v] [-w option [:msg]] [-Y filename] mfilename...
mcc -W dotnet:assembly_name, [className], [framework_version], security ,
remote_type -T link:lib [-a filename...] [-B filename [:arg...]] [-C] [-d outFolder] [-
f filename] [-I directory...] [-K] [-M string] [-N] [-p path...] [-R option] [-S] [-v] [-w
option [:msg]] [-Y filename] mfilename... [class{className: [mfilename...]}...]
mcc -W excel:addin_name, [className], [version] -T link:lib [-a filename...] [-b]
[-B filename [:arg...]] [-C] [-d outFolder] [-f filename] [-I directory...] [-K] [-
M string] [-N] [-p path...] [-R option] [-u] [-v] [-w option [:msg]] [-Y filename]
mfilename...
mcc -W 'java:packageName, [className]' [-a filename...] [-b] [-B filename [:arg...]]
[-C] [-d outFolder] [-f filename] [-I directory...] [-K] [-M string] [-N] [-p path...] [-
R option] [-S] [-v] [-w option [:msg]] [-Y filenamem] filename... [class{className:
[mfilename1,mfilename2,...]}...]
mcc -W CTF:archive_name [-a filename...] [-b] [-B filename [:arg...]] [-d
outFolder] [-f filename] [-I directory...] [-K] [-M string] [-N] [-p path...] [-R
option] [-S] [-v] [-w option [:msg]] [-Y filenamem] filename... [class{className:
[mfilename1,mfilename2,...]}...]
mcc -W mpsxl:archive_name, [className], [version] -T link:lib [-
replaceBlankWithNaN] [-convertDateToString] [-replaceNaNWithZero] [-
convertNumericToDate] [-a filename...] [-b] [-B filename [:arg...]] [-d outFolder]
[-f filename] [-I directory...] [-K] [-M string] [-N] [-p path...] [-R option]

 mcc

4-5

[-S] [-v] [-w option [:msg]] [-Y filenamem] filename... [class{className:
[mfilename1,mfilename2,...]}...]
mcc -H -W mpsxl:archive_name, [className], [version] -T link:lib [-
replaceBlankWithNaN] [-convertDateToString] [-replaceNaNWithZero] [-
convertNumericToDate] [-a filename...] [-b] [-B filename [:arg...]] [-d outFolder] [-f
filename] [-I directory...] [-K] [-M string] [-N] [-p path...] [-R option] [-S] [-v] [-w
option [:msg]] [-Y filenamem] filename... [class{className: [mfilename...]}...]
mcc -H -W hadoop:archive_name,CONFIG:configFile [-a filename...] [-b] [-B
filename [:arg...]] [-d outFolder] [-f filename] [-I directory...] [-K] [-M string]
[-N] [-p path...] [-R option] [-S] [-v] [-w option [:msg]] [-Y filenamem] filename...
[class{className: [mfilename1,mfilename2,...]}...]
mcc -?

Description

mcc -m mfilename compiles the function into a standalone application.

This is equivalent to -W main -T link:exe.

mcc -e mfilename compiles the function into a standalone application that does not
open an MS-DOS® command window.

This is equivalent to -W WinMain -T link:exe.

mcc -l mfilename... compiles the listed functions into a C shared library and
generates C wrapper code for integration with other applications.

This is equivalent to -W lib:libname -T link:lib.

mcc -c mfilename... generates C wrapper code for the listed functions.

This is equivalent to -W lib:libname -T codegen.

mcc -W cpplib:library_name -T link:lib mfilename... compiles the listed
functions into a C++ shared library and generates C++ wrapper code for integration with
other applications.

mcc -W dotnet:assembly_name,className,framework_version,security,

remote_type -T link:lib mfilename... creates a .NET assembly from the
specified files.

4 Functions — Alphabetical List

4-6

• assembly_name — Specifies the name of the assembly and its namespace, which is a
period-separated list, such as companyname.groupname.component.

• className — Specifies the name of the .NET class to be created.
• framework_version — Specifies the version of the Microsoft® .NET Framework you

want to use to compile the assembly. Specify either:

• 0.0 — Use the latest supported version on the target machine.
• version_major.version_minor — Use a specific version of the framework.

Features are often version-specific. Consult the documentation for the feature you are
implementing to get the Microsoft .NET Framework version requirements.

• security — Specifies whether the assembly to be created is a private assembly or a
shared assembly.

• To create a private assembly, specify Private.
• To create a shared assembly, specify the full path to the encryption key file used to

sign the assembly.
• remote_type — Specifies the remoting type of the assembly. Values are remote and

local.

By default, the compiler generates a single class with a method for each function
specified on the command line. You can instruct the compiler to create multiple classes
using class{className:mfilename...}.... className specifies the name of the
class to create using mfilename.

mcc -W excel:addin_name,className,version -T link:lib mfilename...

creates a Microsoft Excel® add-in from the specified files.

• addin_name — Specifies the name of the addin and its namespace, which is a period-
separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the addin_name as the default.

• version — Specifies the version of the add-in specified as major.minor.

• major — Specifies the major version number. If you do not specify a version
number, mcc uses the latest version.

• minor — Specifies the minor version number. If you do not specify a version
number, mcc uses the latest version.

 mcc

4-7

mcc -W 'java:packageName,className' mfilename... creates a Java® package
from the specified files.

• packageName — Specifies the name of the Java package and its namespace, which is
a period-separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the last item in packageName.

By default, the compiler generates a single class with a method for each function
specified on the command line. You can instruct the compiler to create multiple classes
using class{className:mfilename...}.... className specifies the name of the
class to create using mfilename.

mcc -W CTF:archive_name instructs the compiler to create a deployable archive that
is deployable in a MATLAB Production Server™ instance.

mcc -W mpsxl:addin_name,className,version input_marshaling_options

output_marshaling_options -T link:lib mfilename... creates an MATLAB
Production Server integrated Microsoft Excel add-in from the specified files.

• addin_name — Specifies the name of the add-in and its namespace, which is a
period-separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the addin_name as the default.

• version — Specifies the version of the add-in specified as major.minor.

• major — Specifies the major version number. If you do not specify a version
number, mcc uses the latest version.

• minor — Specifies the minor version number. If you do not specify a version
number, mcc uses the latest version.

• input_marshaling_flags — Specifies options for how data is marshaled between
Microsoft Excel and MATLAB.

• -replaceBlankWithNaN — Specifies that a blank in Microsoft Excel is mashaled
into NaN in MATLAB. If you do not specify this flag, blanks are marshaled into 0.

• -convertDateToString — Specifies that dates in Microsoft Excel are marshaled
into MATLAB strings. If you do not specify this flag, dates are marshaled into
MATLAB doubles.

4 Functions — Alphabetical List

4-8

• output_marshaling_flags — Specifies options for how data is marshaled between
MATLAB and Microsoft Excel.

• -replaceNaNWithZero — Specifies that NaN in MATLAB is marshaled into a 0
in Microsoft Excel. If you do not specify this flag, NaN is marshaled into #QNAN in
Visual Basic®.

• -convertNumericToDate — Specifies that MATLAB numeric values are
marshaled into Microsoft Excel dates. If you do not specify this flag, Microsoft
Excel does not receive dates as output.

mcc -H -W hadoop:archiveName,CONFIG:configFile generates deployable archive
that can be run as a job by Hadoop.

• archiveName — Specifies the name of the generated archive.
• configFile — Specifies the path to the Hadoop settings file. See “Hadoop Settings

File”.

mcc -? displays help.

Tip You can issue the mcc command either from the MATLAB command prompt or the
DOS or UNIX® command line.

Options

-a Add to Archive

Add files to the deployable archive using

-a path

to specify files to be added to the deployable archive. Multiple -a options are permitted.

If a file name is specified with -a, the compiler looks for these files on the MATLAB path,
so specifying the full path name is optional. These files are not passed to mbuild, so you
can include files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are
added recursively to the deployable archive. For example

 mcc

4-9

mcc -m hello.m -a ./testdir

specifies that all files in testdir, as well as all files in subfolders of testdir, are
added to the deployable archive, and the folder subtree in testdir is preserved in the
deployable archive.

If a wildcard pattern is included in the file name, only the files in the folder that match
the pattern are added to the deployable archive and subfolders of the given path are not
processed recursively. For example

mcc -m hello.m -a ./testdir/*

specifies that all files in ./testdir are added to the deployable archive and subfolders
under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the
deployable archive and subfolders of ./testdir are not processed recursively.

Note: Currently, * is the only supported wildcard.

All files added to the deployable archive using -a that do not appear on the MATLAB
path at the time of compilation causes a path entry to be added to the deployed
application's run-time path so that they appear on the path when the deployed code
executes.

When files are included, the absolute path for the DLL and header files is changed. The
files are placed in the .\exe_mcr\ folder when the deployable archive is expanded. The
file is not placed in the local folder. This folder is created from the deployable archive the
first time the application is executed. The isdeployed function is provided to help you
accommodate this difference in deployed mode.

The -a switch also creates a .auth file for authorization purposes. It ensures that the
executable looks for the DLL- and H-files in the exe_mcr\exe folder.

Caution If you use the -a flag to include a file that is not on the MATLAB path, the folder
containing the file is added to the MATLAB dependency analysis path. As a result, other
files from that folder might be included in the compiled application.

4 Functions — Alphabetical List

4-10

Note: If the -a flag is used to include custom Java classes, standalone applications work
without any need to change the classpath as long as the Java class is not a member of
a package. The same applies for JAR files. However, if the class being added is a member
of a package, the MATLAB code needs to make an appropriate call to javaaddpath to
update the classpath with the parent folder of the package.

-b Generate Excel Compatible Formula Function

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function
interface to the COM object generated by MATLAB Compiler. When imported into the
workbook Visual Basic code, this code allows the MATLAB function to be seen as a cell
formula function.

-B Specify Bundle

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and corresponding
arguments and/or other file names. The file might contain other -B options. A bundle
can include replacement parameters for compiler options that accept names and version
numbers. See “Using Bundles to Build MATLAB Code”.

-C Do Not Embed Deployable Archive

Do not embed the deployable archive in binaries.

-d Specified Folder for Output

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.

-f Specified Options File

Override the default options file with the specified options file. Use

 mcc

4-11

-f filename

to specify filename as the options file when calling mbuild. This option lets you use
different ANSI compilers for different invocations of the compiler. This option is a direct
pass-through to mbuild.

-g Generate Debugging Information

Include debugging symbol information for the C/C++ code generated by MATLAB
Compiler SDK™. It also causes mbuild to pass appropriate debugging flags to the
system C/C++ compiler. The debug option lets you backtrace up to the point where you
can identify if the failure occurred in the initialization of MATLAB Runtime, the function
call, or the termination routine. This option does not let you debug your MATLAB files
with a C/C++ debugger.

-G Debug Only

Same as -g.

-I Add Folder to Include Path

Add a new folder path to the list of included folders. Each -I option adds a folder to the
beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files, followed
by directory2. This option is important for standalone compilation where the MATLAB
path is not available.

If used in conjunction with the -N option, the -I option will add the folder to the
compilation path in the same position where it appeared in the MATLAB path rather
than at the head of the path.

-K Preserve Partial Output Files

Direct mcc not to delete output files if the compilation ends prematurely, due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to
execute successfully.

4 Functions — Alphabetical List

4-12

-M Direct Pass Through

Define compile-time options. Use

-M string

to pass string directly to mbuild. This provides a useful mechanism for defining
compile-time options, e.g., -M "-Dmacro=value".

Note: Multiple -M options do not accumulate; only the rightmost -M option is used.

-N Clear Path

Passing -N effectively clears the path of all folders except the following core folders (this
list is subject to change over time):

• matlabroot\toolbox\matlab

• matlabroot\toolbox\local

• matlabroot\toolbox\compiler

It also retains all subfolders of the above list that appear on the MATLAB path at
compile time. Including -N on the command line lets you replace folders from the original
path, while retaining the relative ordering of the included folders. All subfolders of
the included folders that appear on the original path are also included. In addition,
the -N option retains all folders that you included on the path that are not under
matlabroot\toolbox.

When using the –N option, use the –I option to force inclusion of a folder, which will be
placed at the head of the compilation path. Use the –p option to conditionally include
folders and their subfolders; if they are present in the MATLAB path, they will appear in
the compilation path, in the same order.

-o Specify Output Name

Specify the name of the final executable (standalone applications only). Use

-o outputfile

 mcc

4-13

to name the final executable output of MATLAB Compiler. A suitable, possibly platform-
dependent, extension is added to the specified name (e.g., .exe for Windows® standalone
applications).

-p Add Folder to Path

Use in conjunction with the required option -N to add specific folders (and subfolders)
under matlabroot\toolbox to the compilation MATLAB path in the same order in
which they appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path, it is
assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and all
its subfolders that appear on the original path are added to the compilation path in
the same order.

• If a folder is included with -p that is not on the original MATLAB path, that folder is
ignored. (You can use -I to force its inclusion.)

-R Run-Time

Provides MATLAB Runtime options. The syntax is as follows:

-R option

Option Description Target

-

logfile,filename

Specify a log file name. MATLAB Compiler

MATLAB Compiler SDK
-

nodisplay

Suppress the MATLAB nodisplay run-
time warning.

MATLAB Compiler

MATLAB Compiler SDK
-nojvm Do not use the Java Virtual Machine (JVM). MATLAB Compiler

MATLAB Compiler SDK
-

startmsg

Customizable user message displayed at
initialization time.

MATLAB Compiler

Standalone Applications

4 Functions — Alphabetical List

4-14

Option Description Target

-

completemsg

Customizable user message displayed when
initialization is complete.

MATLAB Compiler

Standalone Applications

Caution When running on Mac OS X, if -nodisplay is used as one of
the options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

-S Create Singleton MATLAB Runtime Context

The standard behavior for the MATLAB Runtime is that every instance of a class gets
its own runtime context. This runtime context includes a global MATLAB workspace
for variables such as the path and a base workspace for each function in the class. If
multiple instances of a class are created, each instance gets an independent context. This
ensures that changes made to the global, or base, workspace in one instance of the class
does not affect other instances of the same class.

In a singleton MATLAB Runtime, all instances of a class share the runtime context.
If multiple instances of a class are created, the use the runtime context created by the
first instance. This saves start up time and some resources. However, any changes made
to the global workspace or the base workspace by one instance impacts all of the class
instances. For example, if instance1 creates a global variable A in a singleton MATLAB
Runtime, the instance2 will be able to use variable A.

Singleton MATLAB Runtime is only supported by the following products on these specific
targets:

Target supported by Singleton MATLAB Runtime Create a Singleton MATLAB Runtime by....

Excel add-in Default behavior for target is singleton runtime.
You do not need to perform other steps.

.NET assembly Default behavior for target is singleton runtime.
You do not need to perform other steps.

COM component
Java packages

• Using the Library Compiler app, click
Settings and add -S to the Additional
flags to pass to mcc field.

• Using mcc pass the -S flag.

 mcc

4-15

-T Specify Target Stage

Specify the output target phase and type.

Use the syntax -T target to define the output type. Target values are as follow.

Target Description

compile:exe Generate a C/C++ wrapper file and compile
C/C++ files to object form suitable for
linking into a standalone application.

compile:lib Generate a C/C++ wrapper file and compile
C/C++ files to object form suitable for
linking into a shared library/DLL.

link:exe Same as compile:exe and links object
files into a standalone application.

link:lib Same as compile:lib and links object
files into a shared library/DLL.

-u Register COM Component for the Current User

Register COM component for the current user only on the development machine. The
argument applies only for generic COM component and Microsoft Excel add-in targets
only.

-v Verbose

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created
• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about mbuild.

-w Warning Messages

Display warning messages. Use the syntax

4 Functions — Alphabetical List

4-16

-w option [:<msg>]

to control the display of warnings. This table lists the syntaxes.

Syntax Description

-w list List all of the possible warning that mcc can generate.
-w enable Enable complete warnings.
-w disable[:<string>] Disable specific warnings associated with <string>.

See “Warning Messages”for a list of the <string>
values. Omit the optional <string> to apply the
disable action to all warnings.

-w enable[:<string>] Enable specific warnings associated with <string>.
See “Warning Messages” for a list of the <string>
values. Omit the optional <string> to apply the
enable action to all warnings.

-w error[:<string>] Treat specific warnings associated with <string> as
an error. Omit the optional <string> to apply the
error action to all warnings.

-w off[:<string>]

[<filename>]

Turn warnings off for specific error messages defined
by <string>. You can also narrow scope by specifying
warnings be turned off when generated by specific
<filename>s.

-w on[:<string>]

[<filename>]

Turn warnings on for specific error messages defined
by <string>. You can also narrow scope by specifying
warnings be turned on when generated by specific
<filename>s.

It is also possible to turn warnings on or off in your MATLAB code.

For example, to turn warnings off for deployed applications (specified using
isdeployed) in your startup.m, you write:

if isdeployed

 warning off

end

To turn warnings on for deployed applications, you write:

if isdeployed

 mcc

4-17

 warning on

end

-Y License File

Use

-Y license.lic

to override the default license file with the specified argument.

See Also
mbuild

4 Functions — Alphabetical List

4-18

matlab.mapreduce.DeployHadoopMapReducer class
Package: matlab.mapreduce

Configure a MapReduce application for deployment against Hadoop

Description

MapReducer object that represents executing MapReduce on a Hadoop cluster with a
deployed MATLAB Runtime.

Construction

config = matlab.mapreduce.DeployHadoopMapReducer creates a
matlab.mapreduce.DeployHadoopMapReducer object that specifies the default
properties for Hadoop execution.

Use the resulting object as input to the mapreducer function, to specify the
configuration properties for Hadoop execution. For deploying a standalone application,
pass the matlab.mapreduce.DeployHadoopMapReducer object as input to
mapreduce.

config = matlab.mapreduce.DeployHadoopMapReducer(Name,Value) creates a
matlab.mapreduce.DeployHadoopMapReducer object with properties specified by one
or more name-value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'MCRRoot','/hd-shared/hadoop-2.2.0/MCR/v84'

'HadoopInstallFolder' — Path to Hadoop installation
character string

 matlab.mapreduce.DeployHadoopMapReducer class

4-19

Path to Hadoop installation, specified as the comma-separated pair consisting of the
HadoopInstallFolder and a character string.

The default value of Hadoop install folder is specified by the environment variables in the
order of precedence of MATLAB_HADOOP_INSTALL, HADOOP_PREFIX, and HADOOP_HOME.

'HadoopConfigurationFile' — Path to Hadoop application configuration files
character string

Path to Hadoop application configuration files, specified as the comma-separated pair
consisting of the HadoopConfigurationFile and a character string.

'MCRRoot' — MATLAB Runtime install folder for Hadoop cluster
character string

MATLAB Runtime install folder for Hadoop cluster, specified as the comma-separated
pair consisting of the MCRRoot and a character string.

MCRRoot specifies the MATLAB Runtime install folder used by Hadoop when executing
mapreduce tasks in Hadoop.

'HadoopProperties' — Map container of name-value pairs
character string | cell array of strings

Map container of name-value pairs, specified as the comma-separated pair consisting of
the HadoopProperties and a character string or a cell array of strings.

Map container values are passed as inputs to the Hadoop command.

Properties

HadoopInstallFolder — Path to Hadoop installation
character string

Path to Hadoop installation, specified as a character string.

HadoopConfigurationFile — Path to Hadoop application configuration files
character string

Path to Hadoop application configuration files, specified as a character string.

4 Functions — Alphabetical List

4-20

MCRRoot — MATLAB Runtime install folder for Hadoop cluster
character string

MATLAB Runtime install folder for Hadoop cluster, specified as a character string.

MCRRoot specifies the MATLAB Runtime install folder used by Hadoop when executing
mapreduce tasks in Hadoop.

HadoopProperties — Map container of name-value pairs
character string | cell array of strings

Map container of name-value pairs, specified as a character string or a cell array of
strings.

Map container values are passed as inputs to the Hadoop command.

Examples

Create a Deploy Hadoop MapReducer object

Create and use a matlab.mapreduce.DeployHadoopMapReducer object to deploy into
a standalone application and deploy against Hadoop.

config = matlab.mapreduce.DeployHadoopMapReducer('MCRRoot',...

 '/hd-shared/hadoop-2.2.0/MCR/v84');

mr = mapreducer(config);

• “Create Standalone Application to Run Against Hadoop from Command Line” on
page 2-2

See Also
mapreduce | mapreducer

 hadoopCompiler

4-21

hadoopCompiler
Build and package MapReduce applications for deployment against Hadoop

Syntax

hadoopCompiler

hadoopCompiler project_name

Description

hadoopCompiler opens the Hadoop compiler app

hadoopCompiler project_name opens the MATLAB compiler with the project
preloaded.

Examples

Create a New Hadoop Compiler Project

Open the Hadoop compiler app to create a new project.

hadoopCompiler

Input Arguments

project_name — name of the project to be compiled
string

Specify the name of a previously saved MATLAB Compiler project. The project must be
on the current path.

See Also
deploytool | mcc

4 Functions — Alphabetical List

4-22

mapreducer

Define deployed execution for mapreduce

Use this function with MATLAB Compiler to specify information about the execution
environment for standalone applications that execute against Hadoop.

Syntax

mapreducer(config)

mr = mapreducer(config)

Description

mapreducer(config) specifies execution environment. When deploying
a standalone application against Hadoop, config is an object of
matlab.mapreduce.DeployHadoopMapReducer class.

mr = mapreducer(config) returns a MapReducer object to specify the execution
environment. You can define MapReducer objects, allowing you to swap execution
environments by passing one as an input argument to mapreduce.

Examples
• “Create Standalone Application to Run Against Hadoop from Command Line” on

page 2-2

Input Arguments

config — mapreducer object for running in deployed environment
matlab.mapreduce.DeployHadoopMapReducer object

mapreducer object for running in deployed environment, specified as a
matlab.mapreduce.DeployHadoopMapReducer object.

 mapreducer

4-23

Example: config =
mapreducer(matlab.mapreduce.DeployHadoopMapReducer('MCRRoot','/hd-

shared/hadoop-2.2.0/MCR/v84'))

Output Arguments

mr — Execution environment for MapReduce
MapReducer object

Execution environment for mapreduce, returned as a MapReducer object.

More About

Tips

• mapreducer and mapreducer(0) enables different configurations based on the
products you have. In MATLAB, the mapreduce function automatically runs using a
SerialMapReducer. For more information, see mapreducer.

If you have Parallel Computing Toolbox™, see the function reference page for
mapreducer for additional information.

See Also

Functions
gcmr | mapreduce

Classes
matlab.mapreduce.DeployHadoopMapReducer

5

Apps

5 Apps

5-2

Hadoop Compiler

Package MATLAB programs for deployment to Hadoop clusters as MapReduce programs

Description
The Hadoop Compiler packages MATLAB functions into applications for deployment to
Hadoop clusters as MapReduce programs.

Open the Hadoop Compiler App

• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app
icon.

• MATLAB command prompt: Enter hadoopCompiler.

Examples
• “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App”

More About
• “Large Files and Big Data”

Parameters

Map Function

Specify the MATLAB function for the mapper.

Reduce Function

Specify the MATLAB function for the reducer.

 Hadoop Compiler

5-3

Input Types

Specify how the MATLAB Runtime is packaged with the application.

Default: tabulartext

Settings

binary
The input is the result of a previous MapReduce job that was saved as a sequence
file.

tabulartext
The input is a formatted text file.

Output Types

Specify how the MATLAB Runtime is packaged with the application.

Default: binary

Settings

binary
The output is saved as a sequence file.

tabulartext
The output is stored as a formatted text file.

Settings

Specify the output folders for the packaged code.

Default:

• Testing folder: for_testing
• Redistribution folder: for_redistribution

Additional Configuration File Content

Specifies additional parameters to configure how Hadoop runs the job. See “Hadoop
Settings File”.

5 Apps

5-4

Data Store File

Specify the data store for the job to use.

Files Required for MapReduce Job to Run

Specify the MATLAB files and data files that the MapReduce job requires to run. The
listed files are packaged into the generated archive.

Default: The list of files generated by the built-in dependency analysis tool.

Programmatic Use

hadoopCompiler

